题目: | Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic Cancer Therapy |
作者: | Shang Bai, Nailin Yang, Xianwen Wang, Fei Gong, Ziliang Dong, Yuehan Gong, Zhuang Liu*, and Liang Cheng* |
单位: | Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People’s Republic of China |
摘要: | Sonodynamic therapy (SDT), which can generate reactive oxygen species (ROS) based on sonosensitizers under ultrasound (US) to kill tumor cells, has emerged as a noninvasive therapeutic modality with high tissue-penetration depth. Herein, ultrasmall iron-doped titanium oxide nanodots(Fe-TiO2 NDs) are synthesized via a thermal decomposition strategy as a type of sonosensitizers to enhance SDT. Interestingly, the Fe doping in this system appears to be crucial in not only enhancing the US-triggered ROS generation of those NDs but also offering NDs the Fenton-catalytic function to generate ROS from tumor endogenous H2O2 for chemodynamic therapy (CDT). After polyethylene glycol (PEG) modification, Fe-TiO2-PEG NDs demonstrate good physiological stability and biocompatibility. With efficient tumor retention after intravenous injection as revealed by in vivo magnetic resonance (MR) and fluorescent imaging, our Fe-TiO2 NDs demonstrate much better in vivo therapeutic performance than commercial TiO2 nanoparticles owing to the combination of CDT and SDT. Moreover, most of those ultrasmall Fe-TiO2 NDs can be effectively excreted within one month, rendering no obvious long-term toxicity to the treated mice. Our work thus presents a type of multifunctional sonosensitizer for highly efficient cancer treatment via simply doping TiO2 nanostructures with metal ions. |
影响因子: | 14.588 |
分区情况: | 一区 |
链接: |
责任编辑:向丹婷