Nat. Energy: Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells

time:2024-08-15Hits:12设置

Title:

Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells

Authors:

Xuliang Zhang1,2, Hehe Huang1,2, Chenyu Zhao1,2, Lujie Jin1,3, Chihyung Lee4, Youyong Li1,3, Doo-Hyun Ko4, Wanli Ma1,3*, Tom Wu5 & Jianyu Yuan1,2*

Institutions:

1Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China.

2Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, China.

3Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.

4Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea.

5Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China.

Abstract:

Quantum dot (QD) provides a versatile platform for high-throughput processing  of semiconductors for large-area optoelectronic applications.  Unfortunately, the QD solar cell is hampered by the time-consuming  layer-by-layer process, a major challenge in manufacturing printable  devices. Here we demonstrate a sequential acylation-coordination  protocol including amine-assisted ligand removal and Lewis  base-coordinated surface restoration to synthesize conductive APbI3 (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional  solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI3 PeQD-based  solar cells achieve a champion efficiency of 16.61% (certified 16.20%),  exceeding the values obtained with other QD inks and layer-by-layer  processes. The conductive PeQD inks are compatible with large-area  device (9 × 9 cm2) fabrication using the blade-coating technique with a speed up to 50 mm s1.

IF:

49.7

Link:

https://doi.org/10.1038/s41560-024-01608-5


Editor: Guo Jia


返回原图
/