题目: | Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction |
作者: | Na Han 1, 5 , Yu Wang 2, 5 , Lu Ma 3 , Jianguo Wen 4 , Jing Li 4 , Hechuang Zheng 1 , Kaiqi Nie 1 , Xinxia Wang 1 , Feipeng Zhao 1,Yafei Li 2, * , Jian Fan 1,Jun Zhong 1, Tianpin Wu 3, Dean J. Miller 4, Jun Lu 3, *, Shuit-Tong Lee 1, and Yanguang Li 1, 6, * |
单位: | 1Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University, 199 Ren-AiRoad, Suzhou 215123, China. 2College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. 3Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. 4Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA. 5These authors contributed equally 6Lead Contact |
摘要: | Electrochemical reduction of CO2 represents a possible solution for transforming atmospheric CO2 to value-added chemicals such as CO or hydrocarbons, but so far it has been hampered by the lack of suitable electrocatalysts. In this work, we design a type of organic-inorganic hybrid material by template-directed polymerization of cobalt phthalocyanine on carbon nanotubes for a high-performance CO2 reduction reaction. Compared with molecular phthalocyanines, the polymeric form of phthalocyanines supported on the conductive scaffold exhibits an enlarged electrochemically active surface area and improved physical and chemical robustness. Experimental results show that our hybrid electrocatalyst can selectively reduce CO2 to CO with a large faradic efficiency (~90%), exceptional turnover frequency (4,900 hr-1 at η = 0.5 V), and excellent long-term durability. These metrics are superior to those of most of its organic or inorganic competitors. Its high electrocatalytic activity is also supported by density functional theory calculations. |
影响因子: | - |
分区情况: | - |
链接: |
责任编辑:向丹婷